Out of the Way!

The mobile stroke unit is the new, malignant, extravagant reaction to the “Time is Brain” mantra. However, not all locations are endowed with such an embarrassment of resources.

This very brief report details a systems approach in Mashhad, in Northeast Iran. In 2015, these authors reported only 1.2% of all strokes received treatment with IV tPA, and their analysis indicated prehospital delays were their primary issue. Rather than take the CT to the patient, their far more entertaining solution was simply to clear a path. To relieve delays from chronic traffic congestion and gridlock, they designed an online control system for all traffic lights to be activated based on the severity of the emergency medical condition. Green lights in a continuous path from the incident location to the medical facility help activate traffic flow to allow ambulances room to maneuver. These authors report their successful implementation reduced prehospital transfer time by 50%, although absolute measures are not reported.

Now, they do mention their next step is to report on improvements in patient-oriented outcomes. However, unless the traffic is truly catastrophic, I expect improvements in anything but process surrogates will be difficult to detect.

“Time is brain: An online controlling of traffic lights can save lives”
http://emj.bmj.com/content/early/2017/11/24/emermed-2017-206888

“DAWN” of the Mismatch Era

It wasn’t truly so long ago the treatment for an acute stroke was virtually nonexistent. Then, it progressed, with patients eligible for treatment within 3 hours … then 4.5 hours … then 6 … and, now, 24 hours. Whatever happened to “time is brain”? How can we possibly be treating patients out to a day after onset of symptoms?

This is the DAWN trial, randomizing patients with acute ischemic stroke to endovascular intervention or medical management within 6 or 24 hours of symptom onset. Eligibility criteria included occlusion of the internal carotid or proximal middle cerebral artery paired with one of three different clinical syndrome/infarct core mismatches based on CT or MRI perfusion imaging: three cohorts with NIHSS of 10 or 20, with differing sizes of infarct cores. The underlying theory here stems from observations of the viability of cerebral tissue as dependent upon collateral circulation, rather than simply the linear passage of time.

This is, as you might already have gathered from the press releases, a positive study. Unfortunately, it was so positive it was stopped early for benefit based on a primary outcome these authors almost certainly created uniquely to support early termination of these sorts of trials: the “utility-weighted modified Rankin scale”. Rather than use the traditional mRS as in all other stroke trials, or, even, the statistically flawed “ordinal shift analysis”, these authors assigned point values to the various mRS categories, those with the least disability receiving the most points. This resulted in the potential enrollment of 500 patients being stopped at the earliest possible pre-specified interim analysis with a mere 200 patients enrolled.

Tossing out their nonsensical fake outcome measure for the more easily approachable mRS categories, 52 of 107 (49%) of thrombectomy patients were functionally independent (mRS 0-2) at 90 days versus 13 of 99 (13%) of those in the control group. These results were roughly consistent across their various subgroup analyses, although, with such a small trial, the confidence intervals get awfully wide, awfully quickly. That said, despite all the other associated trial shenanigans, it is fairly obvious this sort of treatment is helpful to patients. I’ve been preaching tissue-based approaches to therapy for a couple years now, and despite this trial’s individual issues, in a Bayesian sense these results are consistent with prior evidence.

Of course, this does not actually indicate the window for screening ought to be 24 hours as will likely be justified from these data – the bounds of eligibility for the study do not simply translate subsequently to clinical policy recommendations. The study design does explicitly stratify patients to 6 to 12 hour and 12 to 24 hour cohorts, but the IQR range for “time from symptom onset” for the entire cohort is 10.2 to 16.3 hours, implying approximately half the 12 to 24 hour cohort was actually randomized between 12 and 16 hours. This leaves a paucity – approximately 25 patients in each arm – of data to inform treatment in the 16 to 24 hour window. Contrariwise, these data also do not explicitly exclude patients beyond 24 hours as potential candidates for intervention, as this is a tissue-based, not time-based, paradigm. Further prospective study will be needed to determine the precise time window at which perfusion screening for large vessel occlusions ultimately becomes so low-yield there is no value in the pursuit.

These authors also do not provide useful information regarding the number of patients screened for possible inclusion. Much will be made of these results, with a likely profound impact on our approach to stroke. To properly design stroke systems of care and project resource utilization, physicians and policy makers need data regarding the clinical characteristics of all patients evaluated and those features best identifying those who ought be triaged or transferred to specialized centers.

Finally, of course, there is the perpetual elephant in the room – heavy involvement from the sponsor in the conduct of the study, along with multiple authors on the payroll. These financial conflicts of interest always threaten internal and external validity by limiting generalizability and amplifying apparent effect sizes. All this said, however, this is probably an important step forward in the evolution in our approach to stroke.

“Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct”
http://www.nejm.org/doi/full/10.1056/NEJMoa1706442

The Top “Overuse” of 2016

Another entry in JAMA Internal Medicine’s lovely “Less is More” series, this is a “systematic review” of the previous year’s literature regarding potentially unnecessary care. Living here in the asylum, it seems all our fellow inmates and I are consigned to issuing weather reports from the tempest – but, hey, baby steps.

Their “systematic review” is not particularly rigorous.  It’s basically a literature search, followed by a subjective distillation by author consensus to those considered to be the most potentially impactful – but, regardless, their list is worth reviewing. Without further ado, the highlights of their ten selections:

  • Transesophageal echocardiography is more informative than transthoracic in illuminating the etiology of a stroke, but the additive information does not have a clear downstream benefit on outcomes.
  • Patients undergoing computed tomography to rule out pulmonary embolism without algorithm-compliant use of D-dimer suffer from overuse and low-value testing.
  • CT use increased in all Emergency Department patients with respiratory symptoms, with no evidence of downstream change in prescribing, hospital admission, or mortality.
  • Supplemental oxygen does not demonstrate benefit in patients with chronic obstructive pulmonary disease and mild exertional hypoxia.
  • Small improvements in antibiotic prescribing were seen when comparisons to peers were performed.
  • A shared decision-making implementation for Emergency Department patients with chest pain increased patient engagement and demonstrated a secondary effect of diminished admission and cardiac testing.

Wizard.

“2017 Update on Medical Overuse: A Systematic Review”
https://www.ncbi.nlm.nih.gov/pubmed/28973402

Take Large-Vessel Strokes Directly to Endovascular Centers

This isn’t exactly “news” – or it shouldn’t be – because the basic underlying hypotheses for care in cerebral ischemia are: 1) identify or assume viable brain tissue, and 2) effectively reperfuse said tissue. So, of course, delays in 2 will lead to reductions in remaining viable 1 – the so-called “time is brain”.

This is a review of a mechanical thrombectomy registry, STRATIS, set up mostly just to record outcomes and usage in the “real world”. Registries are great for retrospective analysis fraught with bias, but, if high-quality evidence were cheap and easy to come by, we would have that instead. These authors performed an analysis associating onset-to-revascularization times with outcomes, stratifying their analysis by direct presentation to an endovascular center versus those requiring intra-hospital transfer. Unsurprisingly, onset-to-revascularization times are longer in those who presented to an outside facility prior to transfer. Unadjusted functional outcomes favored those with direct presentation (mRS 0-2 in 60.0% vs 52.2%), with no change in mortality. Statistical analysis of the impact of receiving tPA did not demonstrate any effect on outcomes.

So, yes, patients should be triaged in the field as best as possible to detect a large vessel stroke possibly amenable to intervention, and transported directly to capable centers. The only apparent negative impact is a delay to tPA, but the entire existence of the endovascular industry is predicated on the fact tPA just doesn’t work for large vessel strokes – the reperfusion rate is probably <10%, and it probably leads to increased post-procedural hemorrhage. There is essentially no value to stopping at the closest hospital just to give tPA when definitive therapy is delayed by, as these authors modeled, up to an hour and a half. The collateral circulation does usually give out eventually, so, while the magnitude of time-based treatment effect from this retrospective analysis isn’t reliable, it probably reflects some underlying truths – and stopping anywhere sooner is just a waste.

“Interhospital Transfer Prior to Thrombectomy is Associated with Delayed Treatment and Worse Outcome in the STRATIS Registry”
https://www.ncbi.nlm.nih.gov/pubmed/28943516

Nothing But Advantages to Treating Stroke Mimics!

What is the acceptable rate of treatment of stroke mimics with tPA? Zero? A few percent?  No limit?  It’s mostly harmless, after all – with only a ~1% rate of intracerebral hemorrhage. And, thanks to the free-market forces of comparison shopping and collective bargaining power of individual stroke patients, the cost of alteplase has increased >100% in the past decade to ~$6400 per dose. With all this going for it, it’s no wonder the American Heart Association gives a Class II recommendation for empirically treating, rather than pursuing additional diagnostic tests.

The added bonus – the more mimics you treat, the better your stroke outcomes appear!

This retrospective review of 725 tPA-treated patients at three hospitals evaluated the difference in rate of treatment of stroke mimics at an MRI-based “hub” hospital and CT-based “spokes”. Of 514 patients treated at the hub, only 3 (0.3%) were ultimately given a non-stroke diagnosis. Of 211 treated at the spokes, 33 (16%) were stroke mimics. The authors also noted, splitting their review period into 2005-09 and 2010-14, the rate of treatment of stroke mimics at spokes had increased from 9% to 20%.

To no great surprise, clinical outcomes – as measured both by mRS ≤1 five days after discharge and hemorrhagic transformation – significantly favored the spoke hospitals. Outcomes also improved between the time periods compared – hand-in-hand with the increase in treatment of stroke mimics.

These authors go on to mention treatment of stroke mimics has real financial cost to the health system and to individual patients, the misdiagnosis of stroke notwithstanding – growing ever more important as our health system lurches back towards penalties for pre-existing conditions. The authors acknowledge the luxury of having rapid MRI available for stroke, but go on to implicate aggressive efforts to improve door-to-needle times as contributing to misdiagnosis and harmful waste.

But, none of that matters when you can get a shiny promotional merit badge for your stroke center!

“Effects of increasing IV tPA-treated stroke mimic rates at CT-based centers on clinical outcomes”
http://www.neurology.org/content/early/2017/06/28/WNL.0000000000004149.abstract

Correct, Endovascular Therapy Does Not Benefit All Patients

Unfortunately, that headline is the strongest takeaway available from these data.

Currently, endovascular therapy for stroke is recommended for all patients with a proximal arterial occlusion and can be treated within six hours. The much-ballyhooed “number needed to treat” for benefit is approximately five, and we have authors generating nonsensical literature with titles such as “Endovascular therapy for ischemic stroke: Save a minute—save a week” based on statistical calisthenics from this treatment effect.

But, anyone actually responsible for making decisions for these patients understands this is an average treatment effect. The profound improvements of a handful of patients with the most favorable treatment profiles obfuscate the limited benefit derived by the majority of those potentially eligible.

These authors have endeavored to apply a bit of precision medicine to the decision regarding endovascular intervention. Using ordinal logistic regression modeling, these authors used the MR CLEAN data to create a predictive model for good outcome (mRS score 0-2 at 90 days). These authors subsequently used the IMS-III data as their validation cohort. The final model displayed a C-statistic of 0.69 for the ordinal model and 0.73 for good functional outcome – which is to say, the output is closer to a coin flip than a informative prediction for use in clinical practice.

More importantly, however, is whether the substrate for the model is anachronistic, limiting its generalizability to modern practice. Beyond MR CLEAN, subsequent trials have demonstrated the importance of underlying tissue viability using either CT perfusion or MRI-based selection criteria when making treatment decisions. Their model is limited in its inclusion of just a measure of collateral circulation on angiogram, which is only a surrogate for potential tissue viability. Furthermore, the MR CLEAN cohort is comprised of only 500 patients, and the IMS-III validation only 260. This sample is far too small to properly develop a model for such a heterogenous set of patients as those presenting with proximal cerebrovascular occlusion. Finally, the choice of logistic regression can be debated, simply from a model standpoint, given its assumptions about underlying linear relationships in the data.

I appreciate the attempt to improve outcomes prediction for individual patients, particularly for a resource-intensive therapy such as endovascular intervention in stroke. Unfortunately, I feel the fundamental limitations of their model invalidate its clinical utility.

“Selection of patients for intra-arterial treatment for acute ischaemic stroke: development and validation of a clinical decision tool in two randomised trials”
http://www.bmj.com/content/357/bmj.j1710

Stem Cells for Stroke Redux

A few months ago, folks at Stanford were claiming miraculous recoveries after implanting stem cells directly into patients’ brains at the site of injury. An interesting concept, to be certain.

Now we have “stem cells lite”, or, at least, the slightly-fewer-holes-in-the-skull version – and it’s apparently just as miraculous.

This is a Phase 2 double-blinded dose-escalation study evaluating treatment with intravenous multipotent adult progenitor cells, with treatment initiated between 24 and 48 hours. Their trial design reflects the nature of a Phase 2 trial, with three cohorts, unbalanced allocation, and dosing differences between groups, but is otherwise fairly straightforward. Until you get to the primary outcome:

“The primary efficacy outcome was the multivariate global stroke recovery at day 90, which assesses global disability, neurological deficit, and activities of daily living and consists of mRS 2 or less; NIHSS total score improvement of 75% or more from baseline; and Barthel index of 95 or more in the multipotent adult progenitor cells treatment group, compared with the placebo treatment.”

Which is to say, they’ve conjured up their own unique black-box composite primary outcome – an outcome they changed midway through the trial.

Why would you need to change the primary efficacy outcome in 2014 for a study that started in 2011? The obvious implication is the results were unfavorable – and, the cursory review of their results table suggests this is a reasonable stance to take.

These authors screened 160 patients at several different sites for eligibility and ultimately randomized 129. Of these, three did not receive the allocated intervention – leaving the remainder for analysis. Patients in each group were generally similar based on NIHSS, time until infusion, and stroke interventions. Sticking to traditional outcomes measured by stroke trials, there was no difference between groups: mRS ≤2 in 37% of the intervention group and 36% of the placebo.  However:

“exploratory analyses suggested an increase in excellent outcome in the multipotent adult progenitor cells arms in the ITT population, and a beneficial clinical effect on long-term 1 year disability.“

This “excellent” outcome is the product of the midstream outcome change combined with their post-hoc data dredging for a feasible positive finding – a combination of patients with mRS ≤1, a NIHSS ≤1, and a Barthel Index ≥95. Then, the bulk of their analysis is further restricted to one year outcomes of those who received their stem cells within 36 hours from stroke onset. With such an obvious “beneficial clinical effect”, is there any question regarding the role of the funding source?

“The funder of the study was involved in study design and in data interpretation. All data collection and analysis were overseen by Medpace. One employee of the funder (RWM) was represented on the writing committee.“

and:

“DCH received grants from Athersys, payments to his university from Medpace for patient enrolment, has a patent on the MultiStem cells through his university and has received licensing revenue through his university. LRW received grants from SanBio and Athersys, and personal fees from SanBio. GAF is a consultant for Athersys; received personal fees from Medpace; and payment from Medpace to his institution for study costs. SS received grants from Athersys. SIS received grants from Athersys, and consulting fees that were paid to the institution from Mesoblast, Aldagen, and Celgene. CAS received grants from Athersys. DC received grants from Athersys.”

The likelihood these results are valid, reproducible, and have a clinically meaningful effect size is nearly zero – but that certainly won’t stop them from throwing good money after bad.

“Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial”
https://www.ncbi.nlm.nih.gov/pubmed/28320635

All Aboard the tPA Hype Bus

Indiscriminate use of tPA in those with undifferentiated stroke is a low-value proposition – even if you find the evidence reliable. The utility of tPA for stroke depends on anatomy, time, and tissue status – information the traditional non-contrast head CT does not usually provide. Unfortunately, one of the latest “innovations” in stroke care is simply to do this useless test faster – in a bus, down by the river.

This is the PHAST project out of Cleveland, which, like similar efforts in Berlin, Chattanooga, and Houston, puts a CT scan machine in an oversized ambulance. Many of the initial phases of these projects included a stroke physician physically in the vehicle – but this, as you would expect, takes advantage of telemedicine technology to provide consultation from afar.

The stated hypothesis of this project is “that the MSTU will allow significant reductions in time to evaluation and treatment of patients when compared to a traditional ambulance model in an American urban environment”, which is just mind-numbingly infantile. Of course, pre-hospital administration will be faster than in-house thrombolysis – the interesting data would be with regard to safety and misdiagnosis.

This report is of the first 100 patients evaluated – generated by 317 system alerts. Of these, 33 were given a preliminary diagnosis of probable stroke, 30 possible stroke, 4 transient ischemic attacks, 5 intracerebral hemorrhages, and 28 non-cerebrovascular. Of the 33 probable strokes, 16 received thrombolysis – and, by most of their various metrics, care was accelerated by 20-40 minutes. And, then, no outcomes, safety, or follow-up data is presented – apparently we are simply supposed to operate under the assumption this resource outlay and rush to provide the substrate for potential tPA administration is obviously prudent and effective care.

Probably the only interesting tidbit from this paper was with regard to one of the cases of ICH diagnosed by CT in the prehospital setting. One patient was identified as taking anticoagulation, and prothrombin concentrate complexes were initiated in the pre-hospital setting. The timeliness of anticoagulation reversal is almost certainly beneficial, although the magnitude of effect for the few minutes saved is uncertain.

“Reduction in time to treatment in prehospital telemedicine evaluation and thrombolysis”

http://www.neurology.org/content/early/2017/03/08/WNL.0000000000003786.abstract

Thrombolysis and the Aging Brain

The bleeding complications of thrombolysis are well-described, but frequently under-appreciated in the acute setting. Stroke patients often disappear upstairs after treatment in the Emergency Department quickly enough that we rarely see the neurologic worsening associated with post-thrombolysis hemorrhage.

Risk factors for post-tPA ICH are well-known, but often difficult to precisely pin down for an individual patient. This study pools patients from up to 15 studies to evaluate the effect of leukoariosis on post-tPA hemorrhage. Leukoariosis, essentially, is a cerebral small vessel disease likely related to chronic ischemic damage. It has been long-recognized as a risk factor for increased hemorrhage and poor outcome, independent of age at treatment.

In this study, authors pooled approximately 5,500 patients, half of which were identified to have leukoariosis. The unadjusted absolute risk of symptomatic ICH in those without leukoariosis was 4.1%, while the risk of those with was 6.6%. Then, looking at the 2,700 patients with leukoariosis, those with mild disease had an unadjusted absolute risk of 4.0%, compared with 10.2% for those with moderate or severe. Similar trends towards worse functional outcomes were also seen with regards to worsening leukoariosis.

The moral of the story: the baseline health of the brain matters. When discussing the risks, benefits, and alternatives for informed consent with a family, these substantial risks in those patients with leukoariosis should be clearly conveyed with regards to appropriateness of tPA when otherwise potentially indicated.

“Leukoaraiosis, intracerebral hemorrhage, and functional outcome after acute stroke thrombolysis”

http://www.neurology.org/content/early/2017/01/27/WNL.0000000000003605.abstract

Some Old News About Thrombolysis Before Endovascular Therapy

We’ve spent a little bit of energy on this blog teasing out the appropriate indications for endovascular therapy, and and we’ve used a few of those words to discuss whether thrombolysis prior to is necessary. I am of the opinion: probably not.

It turns out, there are many other prominent neurologists who share that same opinion. Unfortunately, this article is just a rehash of prior data without any new specific insight. Of course, the lay medical press does their typical job of creating definitive, misleading headlines:
Stroke: No Benefit from Adding tPA to Thrombectomy
No Benefit for IV tPA Before Mechanical Thrombectomy in Ischemic Stroke

This is a small post-hoc analysis of the 291 patients undergoing treatment in the SWIFT and STAR trials. Of these, 131 did not receive thrombolysis prior to intervention, with the most common exclusion being either presence of an elevated INR and oral anticoagulation or symptom onset being >4 hours prior to hospital arrival. Other, less common exclusions included blood pressure exclusions, hypoglycemia, and prior strokes. Some patients also received bridging tPA or reduced-dose tPA, as determined appropriate by the interventionalist.

In such a small analysis such as this, little reliable can be made of the results – except to generally say there was no obvious signal confirming nor refuting the appropriateness of thrombolysis prior to intervention. Hemorrhagic complications were similar between groups, as were patient-oriented outcomes. At the least, they offer the appropriate weak conclusion supported by these data: prospective trials are reasonable.

“Combined Intravenous Thrombolysis and Thrombectomy vs Thrombectomy Alone for Acute Ischemic Stroke: A Pooled Analysis of the SWIFT and STAR Studies”
http://jamanetwork.com/journals/jamaneurology/article-abstract/2596239