Punching Holes in CIN

Contrast-induced nephropathy, the scourge of modern medical imaging. Is there any way to prevent it? Most trials usually show alternative treatments are no different than saline – but what about saline itself?  Does saline even help?

This most recent publication in The Lancet claims: no. This is AMACING, a randomized, controlled trial of saline administration versus usual care in patients undergoing contrast CT. These authors recruited patients “at risk” for CIN (glomerular filtration rate 30-59 mL per min/1.73m2), and those assigned to the IV hydration arm received ~25 mL/kg over either 8 or 24 hours spanning the timeframe of the imaging procedure. Their primary outcome was incidence of CIN, as measured by an increase in serum creatinine by 25% or 44 µmol/L within 2-6 days of contrast exposure.

Regardless, despite hydration, the same exact number of patients – 8 – in each group suffered downstream CIN. This gives an absolute between groups difference of -0.1%, and a 95% CI -2.25 to 2.06. This is still technically below their threshold of non-inferiority of 2.1%, but, as the accompanying editorial rightly critiques, it still allows for a potentially meaningful difference. Secondary outcomes measured included adverse events and costs, with no reliable difference in adverse events and obvious advantages in the non-treatment group with regards to costs.

This work, despite its statistical power limitations, fits in nicely with all the other work failing to find effective preventive treatment for CIN – sodium bicarbonate, acetylcysteine, et al. Then, it may also tie into the recent publications having difficulty finding an association between IV contrast and acute kidney injury. Do these preventive treatments fail because they are ineffective, or does the clinical entity and its suspected underlying mechanism not exist?  It appears a more and more reasonable hypothesis the AKI witnessed after these small doses of IV contrast may, in fact, be related to the comorbid illness necessitating imaging, and not the imaging itself.

“Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial”

http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(17)30057-0/abstract

The Emergency Narcotic Dispensary

Far and away, the most common initial exposure to narcotics is through a healthcare encounter. Heroin, opium, and other preparations are far less common than the ubiquitous prescription narcotics inundating our population. As opiate overdose-related morbidity and mortality climbs, increasing focus is rightly turned to the physicians supplying these medications.

This most recent article is from the New England Journal of Medicine, and is focused on the prescriptions provided in the Emergency Department. The Emergency Department is not one of the major prescription sources of narcotics, but may be an important source of exposure, regardless. Through a retrospective analysis of a 3-year cohort of Medicare beneficiaries, these authors defined two treatment groups: patients treated by a lowest-quartile of physician opiate prescribing rates, and those treated by a highest-quartile of physician opiate prescribing rates. The lowest quartile provided narcotics to approximately 7% of ED visits, while the highest to approximately 24%. In the subsequent 12 month period, those who received treatment by the highest-quartile of physician prescribing were more likely to fill at least an additional 6-month supply of another opiate. This adjusted odds ratio of 1.30 compared with the lowest-quartile includes a dose-response relationship with the two middle quartiles, as well.

The authors note this, essentially, means for every 48 patients prescribed an opiate above the lowest prescribing baseline, one additional patient then receives a long-term prescription they otherwise would not.  Their calculation is a little odd – factoring both the additional likelihood of a prescription and the absolute increase in subsequent prescription rates.  The true value likely lies between that and the NNH calculated from the absolute percentage difference – 0.35%, or ~280.  No reliable or specific harms were detected with regards to these patients – additional Emergency Department visits, deaths by overdose, or subsequent encounters for potential side effects were similar between the groups. It is reasonable, however, to expect these additional prescriptions have some small number of downstream harms.

There are many indirect effects measured here, including pinning the entire primary outcome observation on clinical “inertia” resulting from the initial Emergency Department prescription.  They also could not, by their methods, specifically attribute a prescription for opiates to any individual physician – they used the date of an index visit matched to a filled prescription to do so.

That said, the net effect here probably relates to less-restrictive prescribing resulting in prescriptions dispensed to patients for whom dependency is more likely. The effect size is small, but across the entire healthcare system, even small effect sizes result in potentially large absolute magnitudes of effect. The takeaway is not terribly profound – physicians should be judicious as possible with regard both their prescribing rate and the number of morphine equivalents prescribed.

Finally, the article concludes with a pleasing close-up photograph of a tiger.

“Opioid-Prescribing Patterns of Emergency Physicians and Risk of Long-Term Use”
http://www.nejm.org/doi/full/10.1056/NEJMsa1610524

Thrombolysis and the Aging Brain

The bleeding complications of thrombolysis are well-described, but frequently under-appreciated in the acute setting. Stroke patients often disappear upstairs after treatment in the Emergency Department quickly enough that we rarely see the neurologic worsening associated with post-thrombolysis hemorrhage.

Risk factors for post-tPA ICH are well-known, but often difficult to precisely pin down for an individual patient. This study pools patients from up to 15 studies to evaluate the effect of leukoariosis on post-tPA hemorrhage. Leukoariosis, essentially, is a cerebral small vessel disease likely related to chronic ischemic damage. It has been long-recognized as a risk factor for increased hemorrhage and poor outcome, independent of age at treatment.

In this study, authors pooled approximately 5,500 patients, half of which were identified to have leukoariosis. The unadjusted absolute risk of symptomatic ICH in those without leukoariosis was 4.1%, while the risk of those with was 6.6%. Then, looking at the 2,700 patients with leukoariosis, those with mild disease had an unadjusted absolute risk of 4.0%, compared with 10.2% for those with moderate or severe. Similar trends towards worse functional outcomes were also seen with regards to worsening leukoariosis.

The moral of the story: the baseline health of the brain matters. When discussing the risks, benefits, and alternatives for informed consent with a family, these substantial risks in those patients with leukoariosis should be clearly conveyed with regards to appropriateness of tPA when otherwise potentially indicated.

“Leukoaraiosis, intracerebral hemorrhage, and functional outcome after acute stroke thrombolysis”

http://www.neurology.org/content/early/2017/01/27/WNL.0000000000003605.abstract

More CLEAR!

Ah, the CLEAR trial – a trial evaluating the efficacy of intraventricular injections of alteplase for intracerebral hemorrhage with acute obstructive hydrocephalus. In other words, treating brain bleeds with an agent responsible for brain bleeds. It is not quite as nonsensical as it seems, however, as improved resolution of the intraventricular blood is linked to improved outcomes.

This trial, however, performed over the course of six years and enrolling 500 patients, fails to find anything reliable in favor of alteplase – a rather inconsequential end to a decade’s worth of build-up from the initial and phase II trial. At the end of the day, there was no significant difference between either treatment with regard to the primary outcome, patients attaining a mRS of 0-3.

It should also be noted the preliminary results from this trial were presented last year at the International Stroke Conference with breathless coverage:
CLEAR III: tPA Clot Removal Hope for Intraventricular Hemorrhage

Along with the lead author stating “This treatment saves lives. Our results suggest that physicians should begin to think about using it for stable hemorrhagic stroke patients.”

Which, now that we can all review the results together, is obviously not the case – nor is it their conclusion in the published article. These results do raise some questions – mortality was lower in the intervention group, and patients with improve clot evacuation also tended to do better – regarding potential subgroups for benefit. However, without further prospective data to confirm these signals, this intervention should continue to be reserved for controlled trials.

“Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial”
https://www.ncbi.nlm.nih.gov/pubmed/28081952

Insight Is Insufficient

In this depressing trial, we witness a disheartening truth – physicians won’t necessarily do better, even if they know they’re not doing well.

This study tested a mixed educational and peer comparison intervention on primary care physicians in Switzerland, with an end goal of improving antibiotic stewardship for common ambulatory complaints. The “worst-performing” 2,900 physicians with respect to antibiotic prescribing rates were enrolled and randomized to the study intervention or none. The study intervention consisted of materials regarding appropriate prescribing, along with personalized feedback regarding where their prescribing rate ranked compared to the entire national cohort. The core of their hypothesis involved whether just this passive knowledge regarding their peer performance would exert normalizing influence over their practice.

Unfortunately, despite providing these physicians with this insight, as well as tools for improvement, the net effect of their intervention was effectively zero. There were some observations regarding changes in prescribing rates for certain age groups, and for certain types of antibiotics, but dredging through these secondary outcomes leads to only unreliable conclusions.

This is not particularly surprising data. These sorts of passive feedback mechanisms unhitched from material consequences have never previously been shown to be effective. There are other, more effective mechanisms – focused education, decision-support interventions, and shared decision-making – but, for a fragmented, national health system, this represented a relatively inexpensive model to test.

Try again!

“Personalized Prescription Feedback Using Routinely Collected Data to Reduce Antibiotic Use in Primary Care”

https://www.ncbi.nlm.nih.gov/pubmed/28027333

Opiates Versus NSAIDs, the Battle Continues

HealthDay says: “Opioids No Better Than Ibuprofen for Pain After Car Crash: Study”, leading with an assertion that prescription painkillers are no more effective than non-steroidal anti-inflammatory drugs. This was also picked up by the daily American College of Emergency Physicians e-mail newsletter.

So – no?

Despite the best of intentions, there is simply no reliable conclusion to be drawn from the cited publication. In the citation, the authors perform a propensity score-matching secondary analysis of prospectively collected observational data on patients discharged from the Emergency Department following a motor vehicle collision. There were 948 patients in their initial study cohort, with approximately half receiving a prescription at ED discharge. Propensity score matching then further excluded approximately 100 more, and finally patients lost to follow-up reduce their ultimate sample to 284. Their primary outcome was the presence of persistent self-reported moderate to severe pain six weeks after their MVC.

Unsurprisingly, with the wide confidence intervals mandated by their small sample, there was some overlap between the number in each group having persistent pain at six weeks. Thus, this leads the authors to make a guarded, but clearly anti-opiate, conclusion the evidence does not exist to recommend opiate therapy at ED discharge.

The bias in any underpowered study is to commit Type II error, which, as a reminder, is to retain the false null hypothesis in failing to detect an effect. Furthermore, as the authors note in their extensive methods section, in non-randomized studies, the measured and unmeasured confounders ultimately guide group assignment, which can bias the downstream results. The adjustments of propensity matching attempt to control for these, but tend to depend on large sample sizes and robust feature sets to reduce the magnitude of systematic bias – neither of which are present here. The need to impute missing data further reduces the reliability of under foundational data. Lastly, is their primary outcome relevant and related to the interventions examined? I am doubtful that six week persistent pain accurately reflects the scope of benefit (or lack thereof) relating to analgesic pharmacotherapy following MVC.

Avoiding the adverse effect of opiates is certainly important. However, this article should add little to the discussion – despite its lay medical press coverage.

“Persistent pain after motor vehicle collision: comparative effectiveness of opioids versus non-steroidal anti-inflammatory drugs prescribed from the emergency department—a propensity matched analysis”
http://journals.lww.com/pain/Abstract/publishahead/Persistent_pain_after_motor_vehicle_collision__.99393.aspx

No Guidance for Calf Clots from CACTUS

Treatment evidence regarding venous thromboembolism is not particularly sparse – except what to do about calf VTE. The most robust evidence is three decades old, and of little use for generalizing to modern diagnostic methods and direct oral anticoagulants.

This, then, is the CACTUS trial – a randomized, double-blind, placebo-controlled trial examining the need for treatment of isolated calf DVT with subcutaneous nadroparin. The primary outcome was a composite measure of extension of calf DVT to proximal veins, contralateral DVT, or symptomatic pulmonary embolism. Safety endpoints were bleeding, death, and treatment-related adverse events.

Sadly, this evidence is mostly bereft of guidance. Over the six-year course of this trial, they screened 746 patients and only enrolled 259 – 50% of their goal sample. There were four (3.3%) VTE in the nadroparin group compared with seven (5.4%) in the placebo cohort, and these differences failed to reach statistical significance. Furthermore, clinically significant bleeding occurred in one patient in the nadroparin group, along with one clinically significant adverse medication reaction (heparin-induced thrombocytopenia). Thus, the authors conclude: “Nadroparin was not superior to placebo in reducing the risk of proximal extension or venous thromboembolic events in low-risk outpatients with symptomatic calf DVT, but did increase the risk of bleeding.”

However, half the patients enrolled had deep muscular DVT, further reducing the risk profile of their already grossly underpowered cohort. Thus, the question remains open – and probably the most relevant evidence would come from an adequately powered trial comparing the natural course of disease to both oral antiplatelet agents and direct oral anticoagulants.
“Anticoagulant therapy for symptomatic calf deep vein thrombosis (CACTUS): a randomised, double-blind, placebo-controlled trial”

https://www.ncbi.nlm.nih.gov/pubmed/27836513

Thanks to Tom Deloughery (@bloodman) for his insights!

Another Expensive “Miracle”

Coronary artery disease – one of many self-inflicted wounds of Western society – fuels some of the largest pharmaceutical and device blockbusters of our time. Statins, stents, and the entire organization of our health system around STEMI care are all linked to coronary disease.

This JAMA article and its breathless lay coverage focus on a clinical trial for evolocumab (Repatha), one of the new proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. This trial, featuring evolocumab added to a statin versus a statin alone, evaluated this therapy using one of the most surrogate of surrogate markers: nominal change in percent coronary atheroma volume at 78 weeks.

As the press releases indicate, this trial was a massive success – the $14,000-per-dose PCSK9 inhibitor was positive for its primary endpoint. Patients taking just a statin continued to have excellent LDL levels and their coronary atheroma volume, as measured by intravascular ultrasound, was essentially unchanged. The evolocumab cohort, however, had even better LDL levels and … coronary atheroma volume was essentially unchanged. But, the difference between +0.05% and -0.95% is statistically significant, and therefore, the trial was a success.

There were, of course, in this trial with only 968 patients, no signals of clinically relevant benefit nor obvious reliable harm. Considering the fierce debate regarding whether statins are already overprescribed, despite being ubiquitously inexpensive, I do not see any reason to look forward to this $14,000 drug entering more widespread use.

“Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial”
http://jamanetwork.com/journals/jama/fullarticle/2584184

More Coverage of Inappropriate Antibiotic Prescribing

If this feels like déjà vu, it might be because it is.

This short research letter in JAMA Internal Medicine describes patterns of antibiotic prescribing for three common conditions: otitis media, sinusitis, and pharyngitis. In all of these cases – in the infrequent occasion antibiotics are necessary – the appropriate first-line antibiotic is amoxicillin/penicillin. These authors estimate, based on treatment failures, allergies, and complicated disease, approximately 80% of antibiotic prescriptions for these conditions should be the first-line agents.

How did we do? Well, better in pediatrics than adults, but first-line prescribing ranged from a low of 37% to a high of 67%. The most commonly used inappropriate antibiotics were macrolides (invariably azithromycin) and fluoroquinolones. Macrolides are usually inappropriate due to high levels of resistance among common pathogens, and fluroquinolones are simply too broad-spectrum to be appropriate.

The catch, unfortunately, is the data source: the National Ambulatory Medical Care Survey, warts and all, from 2010 to 2011. The authors state they expect practice patterns have not changed much in the last five years, but it’s still a little challenging to generalize this to current practice.

Finally, as a nice corollary, this Medical Letter article was featured in JAMA regarding fluoroquinolones and their increasingly detected serious adverse effects. When antibiotics are truly necessary, physicians should try and choose one of the many alternatives presented in the article.

“Frequency of First-line Antibiotic Selection Among US Ambulatory Care Visits for Otitis Media, Sinusitis, and Pharyngitis”
http://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2571613

Finding the Holes in CPOE

Our digital overlords are increasingly pervasive in medicine. In many respects, the advances of computerized provider order-entry are profoundly useful: some otherwise complex orders are facilitated, serious drug-interactions can be checked, along with a small cadre of other benefits. But, we’ve all encountered its limitations, as well.

This is a qualitative descriptive study of medication errors occurring despite the presence of CPOE. This prospective FDA-sponsored project identified 2,522 medication errors across six hospitals, 1,308 of which were related to CPOE. These errors fell into two main categories: CPOE failed to prevent the error (86.9%) and CPOE facilitated the error (13.1%).

CPOE-facilitated errors are most obvious. For example, these include instances in which an order set was out-of-date, and a non-formulary medication order resulted in delayed care for a patient; interface issues resulting in mis-clicks or misreads; or instances in which CPOE content was simply erroneous.

More interesting, however, are the “failed to prevent the error” issues – which are things like dose-checking and interaction-checking failures. The issue here is not specifically the CPOE, but that providers have become so dependent upon the CPOE to be a reliable safety mechanism that we’ve given up agency to the machine. We are bombarded by so many nonsensical alerts, we’ve begun to operate under an assumption that any order failing to anger our digital nannies must be accurate. These will undoubtedly prove to be the most challenging errors to stamp out, particularly as further cognitive processes are offloaded to automated systems.

“Computerized prescriber order entry– related patient safety reports: analysis of 2522 medication errors”
http://jamia.oxfordjournals.org/content/early/2016/09/27/jamia.ocw125